Ch 6:Decision Making and
Branching

Sequential Programming Revisited

1 /I Addition.cs

2 I/ An addition program.

3

4 using System;

5

6 class Addition

7 A

8 static void Main(string[] args)

9

10 string firstNumber, // first string entered by user
11 secondNumber; // second string entered by user
12

13 int number1, /I first number to add

14 number2, /I second number to add

15 sum; /I sum of numberl and number2
16

17 /I prompt for and read first number from user as string
18 Console.Write();
19 firstNumber = Console.ReadLine();

20

21 /I read second number from user as string

22 Console.Write(

23 secondNumber = Console.ReadLine();

24

25 /I convert numbers from type string to type int
26 numberl = Int32.Parse(firstNumber);

27 number2 = Int32.Parse(secondNumber);

28

29 /I add numbers

30 sum = numberl + number2;

31

32 /I display results

33 Console.WriteLine(, sum);
34

35 }// end method Main

36

37 }//end class Addition

17
18
19
20
21
22
23
24
25

/[prompt for and read first number from user as string
Console.Write();

firstNumber = Console.ReadLine();

// read second number from user as string
Console.Write()i

secondNumber = Console.ReadLine();

// convert numbers from type string to type int
numberl = Int32.Parse(firstNumber);

number2 = Int32.Parse(secondNumber);

/I add numbers

sum = numberl + number2;

/[display results

Console.WriteLine(, sum);

Seqguence Structure (Flowchart)

-

Each of these statements could be:

» a variable declaration

* an assignment statement

« a method call (e.g., Console.WriteLine(..);)

More Interesting: Control Statements

[Selection (conditional statements): decide whether or not to execute a
particular statement; these are also called the selection statements or
decision statements

e if selection (one choice)
« if/else selection (two choices)
— Also: the ternary conditional operator e,?e,:e;

« switch statement (multiple choices)

[Repetition (loop statements): repeatedly executing the same statements
(for a certain number of times or until a test condition is satisfied).

e while structure
e do/while structure
e for structure

« foreach structure (Chapter 12)

Why Control Statements ?

JLast few classes: a sequence of
statements

Q Sequential programming

[Most programs need more flexibility in the order
of statement execution

[The order of statement execution is called the
flow of control

Pseudocode & Flowcharts to Represent

Flow of Control

[Pseudocode
O Artificial and informal language
O Helps programmers to plan an algorithm
O Similar to everyday English
O Not an actual programming language

[Flowchart ——— a graphical way of writing pseudocode
O Rectangle used to show action

O Circles used as connectors

O Diamonds used as decisions O

Seguence Structure

T

add grade to total total = total + grade;

A 4

add 1 to counter counter = counter + 1;

:

C# Control Structures: Selection

if/else structure
(double selection)

I:<>T_

\ 4

if structure

? (single selection)
T

_ —

\ 4

O

EH

switch structure
(multiple selections)

*| break

» break

\ 4

break

1

brggk

C# Control Structures: Repetition

Q while structure for structure/foreach structure

i .

F

O <">-L> —

do/while structure !}F

The 1 f Statement

[The 1 statement has the following syntax:

The condition must be a boolean expression.

ifisaC# It must evaluate to either true or false.
reserved word /

~

if (condition)
statement;

|

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

10

1f Statement

if (<test’>)
<code executed if <test> is true> ;

[The if statement

O Causes the program to make a selection
O Chooses based on conditional
<{test>: any expression that evaluates to a bool type
- True: perform an action
- False: skip the action
O Single entry/exit point

QO No semicolon after the condition

11

i f Statement (cont’ d)

if (<test’>)
{

<code executed if <test> is true> ;

<more code executed if <test> is true>

.
7

O The body of the branch can also be a block
statement!

QO No semicolon after the condition

QO No semicolon after the block statement

12

i f Statement (cont’ d)

print “Passed”

if (studentGrade >=

Console.Writeline

// beginning of the

60)

(“Passed”) ;

next statement

13

i f Statement (cont’ d)

Grade >= 60

print “Passed”

|

if (studentGrade >= 60)
{

Console.WriteLine (“Passed”);

// beginning of the next statement

1f/else Statement

if (<test’>)

<code executed if <test’> is true> ;
else

<code executed if <test’> is false> ;

[The 1f/else structure

O Alternate courses can be taken when the statement
Is false

O Rather than one action there are two choices
O Nested structures can test many cases

if/else Statement (cont’ d)

if (<test’>)
{

<code executed if <test> is true> ;

4

°
4

O Can use the block statement inside either branch

16

if/else Statement (cont d)

false

y

print

“Failed”

Yo%

Grade >= 60

true

print “Passed”

0

if (studentGrade >= 60)
Console.WriteLine (“Passed”);
else
Console.WriteLine (“Failed”);

// beginning of the next statement

17

if/else Statement (cont d)

false

y

print

“Failed”

rade >= 60

\/

Yo%

true

print “Passed”

0

if (studentGrade >= 60)
{

Console.WritelLine (“Passed”);
}
else

Console.Writeline (“Failed”);

// beginning of the next statement

18

Nested if/else Statements

[The statement
executed as a
result of an if
statement or else
clause could be
another If
statement

[These are called

nested if /else
statements

if (studentGrade >= 90)
Console.WritelLine (“A”) ;
else if (studentGrade >= 80)
Console.WritelLine (“B”) ;
else if (studentGrade >= 70)
Console.WriteLine (“C”) ;
else if (studentGrade >= 60)
Console.WriteLine (“D”) ;

else

Console.WriteLine (“F”) ;

// beginning of the next statement

19

Unbalanced 1 f-else Statements

if (favorite ==

if (price <=

A\ apple ”)
10)

Console.WriteLine (“10”) ;

else

Console.WriteLine (“1”) ;

if (favorite == “apple”)
if (price <= 10)

Console.WriteLine (“10”) ;
else
Console.WritelLine (“not my favorite”);

20

&rnary Conditional Operator (?:)

7 Conditional Operator (e,?e,:e,)
O C#’s only ternary operator

O Can be used to construct expressions
O Similar to an 1f/else structure

string result;

int numQ;

result = (numQ==1) ? “Quarter” : “Quarters”;

// beginning of the next statement

21

The switch Statement

3 The switch statement provides another means
to decide which statement to execute next

[The switch statement evaluates an expression,
then attempts to match the result to one of
several possible cases

[Each case contains a value and a list of
statements

[The flow of control transfers to statement list
associated with the first value that matches

22

The switch Statement Syntax

The general syntax of a switch statement is:

switch
and
case
and
default
are
reserved
words

switch (expression)

{

case valuel
statement-listl

case value?
statement-list2

case

default
statement-list

If expression
matches value2,
control jumps
to here

23

The switch Statement

frue

_’lcasea action(s) |—P| break;

true
@ [caseb action(s) |_’| break;

false

true
@ —>| case Z action(s) |—P| break;

|default action(s)|

| break; |

P

<«

v

24

The switch Statement

[The expression of a switch statement must
result in an /ntegral data type, like an integer or
character or a string

[Note that the implicit boolean condition in a
switch statement is equality — it tries to match
the expression with a value

25

The switch Statement

[Aswitch statement can have an optional default case as
the last case in the statement

O The default case has no associated value and simply uses the
reserved word default

O If the default case is present, control will transfer to it if no
other case value matches

O If there is no default case, and no other value matches the
expression, control falls through to the statement after the
switch

[Abreak statement is used as the last statement in each
case’'s statement list

O Abreak statement causes control to transfer to the end of the
switch statement

26

