
Ch 6:Decision Making and

Branching

By : Ansari Rafiya

2

Sequential Programming Revisited

1 // Addition.cs

2 // An addition program.

3

4 using System;

5

6 class Addition

7 {

8 static void Main(string[] args)

9 {

10 string firstNumber, // first string entered by user

11 secondNumber; // second string entered by user

12

13 int number1, // first number to add

14 number2, // second number to add

15 sum; // sum of number1 and number2

16

17 // prompt for and read first number from user as string

18 Console.Write("Please enter the first integer: ");

19 firstNumber = Console.ReadLine();

20

21 // read second number from user as string

22 Console.Write("\nPlease enter the second integer: ");

23 secondNumber = Console.ReadLine();

24

25 // convert numbers from type string to type int

26 number1 = Int32.Parse(firstNumber);

27 number2 = Int32.Parse(secondNumber);

28

29 // add numbers

30 sum = number1 + number2;

31

32 // display results

33 Console.WriteLine("\nThe sum is {0}.", sum);

34

35 } // end method Main

36

37 } // end class Addition

17 // prompt for and read first number from user as string

18 Console.Write("Please enter the first integer: ");

19 firstNumber = Console.ReadLine();

20

21 // read second number from user as string

22 Console.Write("\nPlease enter the second integer: ");

23 secondNumber = Console.ReadLine();

24

25 // convert numbers from type string to type int

26 number1 = Int32.Parse(firstNumber);

27 number2 = Int32.Parse(secondNumber);

28

29 // add numbers

30 sum = number1 + number2;

31

32 // display results

33 Console.WriteLine("\nThe sum is {0}.", sum);

3

Sequence Structure (Flowchart)

.

.

Each of these statements could be:

• a variable declaration

• an assignment statement

• a method call (e.g., Console.WriteLine(…);)

4

More Interesting: Control Statements

 Selection (conditional statements): decide whether or not to execute a
particular statement; these are also called the selection statements or
decision statements

• if selection (one choice)

• if/else selection (two choices)

– Also: the ternary conditional operator e1?e2:e3

• switch statement (multiple choices)

 Repetition (loop statements): repeatedly executing the same statements
(for a certain number of times or until a test condition is satisfied).

• while structure

• do/while structure

• for structure

• foreach structure (Chapter 12)

5

Why Control Statements ?

Last few classes: a sequence of
statements
 Sequential programming

Most programs need more flexibility in the order
of statement execution

 The order of statement execution is called the
flow of control

6

Pseudocode & Flowcharts to Represent
Flow of Control

 Pseudocode
 Artificial and informal language

 Helps programmers to plan an algorithm

 Similar to everyday English

 Not an actual programming language

 Flowchart --- a graphical way of writing pseudocode

 Rectangle used to show action

 Circles used as connectors

 Diamonds used as decisions

7

Sequence Structure

add grade to total

add 1 to counter

total = total + grade;

counter = counter + 1;

8

C# Control Structures: Selection

T

F

if structure

(single selection)

if/else structure

(double selection)
TF

switch structure

(multiple selections)

.

.

break

break

break

break

T

T

T

F

F

F

.

9

C# Control Structures: Repetition

T

F

while structure

T

F

do/while structure
F

T

for structure/foreach structure

10

The if Statement

 The if statement has the following syntax:

if (condition)

statement;

if is a C#

reserved word

The condition must be a boolean expression.

It must evaluate to either true or false.

If the condition is true, the statement is executed.

If it is false, the statement is skipped.

11

if Statement

if (<test>)

<code executed if <test> is true> ;

 The if statement

 Causes the program to make a selection

 Chooses based on conditional
• <test>: any expression that evaluates to a bool type

• True: perform an action

• False: skip the action

 Single entry/exit point

 No semicolon after the condition

12

if Statement (cont’d)

if (<test>)

{

<code executed if <test> is true> ;

……

<more code executed if <test> is true> ;

}

 The body of the branch can also be a block
statement!

 No semicolon after the condition

 No semicolon after the block statement

13

if Statement (cont’d)

print “Passed”Grade >= 60

true

false

if (studentGrade >= 60)

Console.WriteLine (“Passed”);

// beginning of the next statement

14

if Statement (cont’d)

print “Passed”Grade >= 60

true

false

if (studentGrade >= 60)

{

Console.WriteLine (“Passed”);

}

// beginning of the next statement

15

if/else Statement

if (<test>)

<code executed if <test> is true> ;

else

<code executed if <test> is false> ;

 The if/else structure

 Alternate courses can be taken when the statement
is false

 Rather than one action there are two choices

 Nested structures can test many cases

16

if/else Statement (cont’d)

if (<test>)

{

<code executed if <test> is true> ;

……

}

else

{

<code executed if <test> is false> ;

……

}

 Can use the block statement inside either branch

17

if/else Statement (cont’d)

Grade >= 60

print “Passed”print “Failed”

false true

if (studentGrade >= 60)

Console.WriteLine (“Passed”);

else

Console.WriteLine (“Failed”);

// beginning of the next statement

18

if/else Statement (cont’d)

Grade >= 60

print “Passed”print “Failed”

false true

if (studentGrade >= 60)

{

Console.WriteLine (“Passed”);

}

else

Console.WriteLine (“Failed”);

// beginning of the next statement

19

Nested if/else Statements

if (studentGrade >= 90)

Console.WriteLine(“A”);

else if (studentGrade >= 80)

Console.WriteLine(“B”);

else if (studentGrade >= 70)

Console.WriteLine(“C”);

else if (studentGrade >= 60)

Console.WriteLine(“D”);

else

Console.WriteLine(“F”);

// beginning of the next statement

 The statement
executed as a
result of an if
statement or else
clause could be
another if
statement

 These are called

nested if /else
statements

20

Unbalanced if-else Statements

if (favorite == “apple”)

if (price <= 10)

Console.WriteLine(“10”);

else

Console.WriteLine(“1”);

if (favorite == “apple”)

if (price <= 10)

Console.WriteLine(“10”);

else

Console.WriteLine(“not my favorite”);

21

Ternary Conditional Operator (?:)

 Conditional Operator (e1?e2:e3)
 C#’s only ternary operator

 Can be used to construct expressions

 Similar to an if/else structure

string result;

int numQ;

…………

result = (numQ==1) ? “Quarter” : “Quarters”;

// beginning of the next statement

22

The switch Statement

 The switch statement provides another means
to decide which statement to execute next

 The switch statement evaluates an expression,
then attempts to match the result to one of
several possible cases

 Each case contains a value and a list of
statements

 The flow of control transfers to statement list
associated with the first value that matches

23

The switch Statement: Syntax

The general syntax of a switch statement is:

switch (expression)

{

case value1 :

statement-list1

case value2 :

statement-list2

case ...

default :

statement-list

}

If expression

matches value2,

control jumps

to here

switch

and

case

and

default

are

reserved

words

24

The switch Statement

break;

case: a case a action(s)
true

false

.

.

.

break;

case b action(s) break;

false

false

case: z case z action(s) break;

default action(s)

true

true

case: b

25

The switch Statement

 The expression of a switch statement must
result in an integral data type, like an integer or
character or a string

 Note that the implicit boolean condition in a
switch statement is equality - it tries to match
the expression with a value

26

The switch Statement

 A switch statement can have an optional default case as
the last case in the statement
 The default case has no associated value and simply uses the

reserved word default

 If the default case is present, control will transfer to it if no
other case value matches

 If there is no default case, and no other value matches the
expression, control falls through to the statement after the
switch

 A break statement is used as the last statement in each
case's statement list
 A break statement causes control to transfer to the end of the

switch statement

