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Sequential Programming Revisited

1    //  Addition.cs

2    // An addition program.

3    

4    using System;

5    

6 class Addition

7    {

8    static void Main( string[] args )

9    {

10 string firstNumber,   // first string entered by user

11 secondNumber;  // second string entered by user

12   

13 int number1,          // first number to add

14   number2,         // second number to add

15   sum;             // sum of number1 and number2

16   

17   // prompt for and read first number from user as string

18 Console.Write( "Please enter the first integer: " );

19 firstNumber = Console.ReadLine();

20   

21   // read second number from user as string

22   Console.Write( "\nPlease enter the second integer: " );

23   secondNumber = Console.ReadLine();

24   

25   // convert numbers from type string to type int

26 number1 = Int32.Parse( firstNumber );

27   number2 = Int32.Parse( secondNumber );

28   

29   // add numbers

30 sum = number1 + number2;

31   

32   // display results

33 Console.WriteLine( "\nThe sum is {0}.", sum );

34   

35   } // end method Main

36   

37   } // end class Addition

17   // prompt for and read first number from user as string

18 Console.Write( "Please enter the first integer: " );

19 firstNumber = Console.ReadLine();

20   

21   // read second number from user as string

22   Console.Write( "\nPlease enter the second integer: " );

23   secondNumber = Console.ReadLine();

24   

25   // convert numbers from type string to type int

26 number1 = Int32.Parse( firstNumber );

27   number2 = Int32.Parse( secondNumber );

28   

29   // add numbers

30 sum = number1 + number2;

31   

32   // display results

33 Console.WriteLine( "\nThe sum is {0}.", sum );
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Sequence Structure (Flowchart)

.

.

Each of these statements could be:

• a variable declaration

• an assignment statement

• a method call (e.g., Console.WriteLine( …); )
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More Interesting: Control Statements

 Selection (conditional statements): decide whether or not to execute a 
particular statement; these are also called the selection statements or 
decision statements

• if selection (one choice)

• if/else selection (two choices)

– Also: the ternary conditional operator   e1?e2:e3

• switch statement (multiple choices)

 Repetition (loop statements): repeatedly executing the same statements 
(for a certain number of times or until a test condition is satisfied). 

• while structure

• do/while structure

• for structure

• foreach structure (Chapter 12)
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Why Control Statements ?

Last few classes: a sequence of 
statements
 Sequential programming

Most programs need more flexibility in the order 
of statement execution

 The order of statement execution is called the 
flow of control
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Pseudocode & Flowcharts to Represent 
Flow of Control

 Pseudocode
 Artificial and informal language

 Helps programmers to plan an algorithm

 Similar to everyday English

 Not an actual programming language

 Flowchart --- a graphical way of writing pseudocode 

 Rectangle used to show action

 Circles used as connectors

 Diamonds used as decisions
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Sequence Structure

add grade to total

add 1 to counter

total = total + grade;

counter = counter + 1;
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C# Control Structures: Selection 
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C# Control Structures: Repetition

T

F

while structure

T

F

do/while structure
F

T

for structure/foreach structure
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The if Statement

 The if statement has the following syntax:

if ( condition )

statement;

if is a C#

reserved word

The condition must be a boolean expression.

It must evaluate to either true or false.

If the condition is true, the statement is executed.

If it is false, the statement is skipped.
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if Statement

if ( <test> ) 

<code executed if <test> is true> ;

 The if statement

 Causes the program to make a selection

 Chooses based on conditional
• <test>: any expression that evaluates to a bool type

• True: perform an action

• False: skip the action

 Single entry/exit point

 No semicolon after the condition
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if Statement (cont’d)

if ( <test> ) 

{

<code executed if <test> is true> ;

……

<more code executed if <test> is true> ;

}

 The body of the branch can also be a block 
statement!

 No semicolon after the condition

 No semicolon after the block statement
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if Statement (cont’d)

print “Passed”Grade >= 60

true

false

if (studentGrade >= 60)

Console.WriteLine (“Passed”);

// beginning of the next statement
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if Statement (cont’d)

print “Passed”Grade >= 60

true

false

if (studentGrade >= 60)

{

Console.WriteLine (“Passed”);

}

// beginning of the next statement
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if/else Statement

if ( <test> ) 

<code executed if <test> is true> ;

else

<code executed if <test> is false> ;

 The if/else structure

 Alternate courses can be taken when the statement 
is false

 Rather than one action there are two choices

 Nested structures can test many cases
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if/else Statement (cont’d)

if ( <test> )

{

<code executed if <test> is true> ;

……

} 

else

{

<code executed if <test> is false> ;

……

}

 Can use the block statement inside either branch
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if/else Statement (cont’d)

Grade >= 60

print “Passed”print “Failed”

false true

if (studentGrade >= 60)

Console.WriteLine (“Passed”);

else

Console.WriteLine (“Failed”);

// beginning of the next statement
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if/else Statement (cont’d)

Grade >= 60

print “Passed”print “Failed”

false true

if (studentGrade >= 60)

{

Console.WriteLine (“Passed”);

}

else

Console.WriteLine (“Failed”);

// beginning of the next statement
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Nested if/else Statements

if (studentGrade >= 90)

Console.WriteLine(“A”);

else if (studentGrade >= 80)

Console.WriteLine(“B”);

else if (studentGrade >= 70)

Console.WriteLine(“C”);

else if (studentGrade >= 60)

Console.WriteLine(“D”);

else

Console.WriteLine(“F”);

// beginning of the next statement

 The statement 
executed as a 
result of an if
statement or else
clause could be 
another if
statement

 These are called 

nested if /else 
statements
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Unbalanced if-else Statements

if (favorite == “apple”)

if (price <= 10 )

Console.WriteLine(“10”);

else

Console.WriteLine(“1”);

if (favorite == “apple”)

if (price <= 10 )

Console.WriteLine(“10”);

else

Console.WriteLine(“not my favorite”);
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Ternary Conditional Operator (?:)

 Conditional Operator (e1?e2:e3)
 C#’s only ternary operator

 Can be used to construct expressions

 Similar to an if/else structure

string result;

int numQ;

…………

result = (numQ==1) ? “Quarter” : “Quarters”;

// beginning of the next statement
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The switch Statement

 The switch statement provides another means 
to decide which statement to execute next

 The switch statement evaluates an expression, 
then attempts to match the result to one of 
several possible cases

 Each case contains a value and a list of 
statements

 The flow of control transfers to statement list 
associated with the first value that matches
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The switch Statement: Syntax

The general syntax of a switch statement is:

switch ( expression )

{

case value1 :

statement-list1

case value2 :

statement-list2

case ...

default :

statement-list

}

If expression

matches value2,

control jumps

to here

switch

and

case

and

default

are

reserved

words
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The switch Statement

break;

case: a case a  action(s)
true

false

.

.

.

break;

case b  action(s) break;

false

false

case: z case z  action(s) break;

default action(s)

true

true

case: b
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The switch Statement

 The expression of a switch statement must 
result in an integral data type, like an integer or 
character or a string

 Note that the implicit boolean condition in a 
switch statement is equality - it tries to match 
the expression with a value
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The switch Statement

 A switch statement can have an optional default case as 
the last case in the statement
 The default case has no associated value and simply uses the 

reserved word default

 If the default case is present, control will transfer to it if no 
other case value matches

 If there is no default case, and no other value matches the 
expression, control falls through to the statement after the 
switch

 A break statement is used as the last statement in each 
case's statement list
 A break statement causes control to transfer to the end of the 

switch statement


